
Logic Analyzers
Application Note 1337
Feeling Comfortable with
A

Feeling Comfortable with

Logic Analyzers

You need to simultaneously
look at the inputs and outputs
of a 16-bit counter to determine
a timing error and you have
only a 2-channel scope. How do
you look at them all? You've
just developed timing diagrams
for a board full of digital
circuitry. How do you verify
them? An intermittent glitch
appears to occur on one of the
data lines of your
microprocessor system, causing
the processor to get incorrect
data. You can't trigger on just
the glitch with your
oscilloscope. What do you use
to capture and analyze it?

With the wrong tool, solving
these kinds of problems can be
very time consuming. Success
may depend on knowing which
tool can get the job done
quickly. For the above
problems, the best solution is
the logic analyzer.

This application note is
intended as a quick overview of
logic analyzer basics. With it,
you can cut down on the time
investment needed to learn a
new instrument. It doesn't
cover many detailed
measurements, but it does give
you a good idea of what a logic
analyzer can do. We talk about
questions like "Why should I
use a logic analyzer?" and
"What will one do for me?"
2

Contents

1 Oscilloscope or Logic Analyzer? . 3

2 What’s a Logic Analyzer? . 5

What’s a Timing Analyzer? . 6

What’s a State Analyzer? . 13

3 Put Them All In One Instrument! . 18

4 How Do I Connect To My Target System? . 21

Summary . 23

Oscilloscope or Logic Analyzer?
11 When given the
choice between
using an
oscilloscope or a
logic analyzer,
many people will

choose an oscilloscope. Why?
Because a scope is more
familiar to most users.
However, a scope has some
shortcomings that limit its
usefulness in some
applications. A logic analyzer
may yield more useful
information in many of these
applications. Because of some
overlapping capabilities
between a scope and a logic
analyzer, either may be used in
some cases. How do you
determine which is better for
your application? The next few
paragraphs give some basic
guidelines.

When Should I Use A

Scope?

• When you need to see small
voltage excursions on your
signals.

• When you need high time-
interval accuracy.

Generally, an oscilloscope is the
instrument to use when you
need high vertical or voltage
resolution. To say it another
way, if you need to see every
voltage excursion, like those
shown in figure 1.1, you should
use a scope.

Many scopes, including the new
generation digitizing ones, can
also provide very high time-
interval resolution. That is,
they can measure the time
interval between two events
with very high accuracy.
Overall, an oscilloscope is to be
used when you need
parametric information.

Figure 1.1 Oscilloscope waveform
3

When Should I Use A

Logic Analyzer?

•When you need to see many
signals at once.

•When you need to look at
signals in your system the same
way your hardware does.

•When you need to trigger on a
pattern of highs and lows on
several lines and see the result.

Logic analyzers grew out of
oscilloscopes. They present
data in the same general way
that a scope does; the
horizontal axis is time, the
vertical axis is voltage
amplitude. But, rather than
providing high voltage
resolution or time interval
accuracy like a scope, a logic
analyzer can capture and
display hundreds of signals at
once, something that a scope
can not do.

A logic analyzer reacts the
same way as your logic circuit
does when a single threshold is
crossed by a signal in your
system. It will recognize the
signal to be either low or high.
It can also trigger on patterns
of highs and lows on these
signals.

So when do you use a logic
analyzer? When you need to
look at more lines than your
oscilloscope can show you,
provided you do not need
precise time interval
information. If you need to look
at parametric information, a
logic analyzer is not a good
choice (figure 1.2).

Logic analyzers are particularly
useful when looking at time
relationships or data on a bus –
e.g. a microprocessor address,
data, or control bus. It can
decode the information on
microprocessor buses and
present it in a meaningful form.

Generally, when you are past
the parametric stage of design,
and are interested in timing
relationships among many
signals and need to trigger on
patterns of logic highs and
lows, the logic analyzer is the
right tool.

Figure 1.2 Oscilloscope and timing waveforms
4

What’s a Logic Analyzer?
22 Now that we've
talked a little
about when to use
a logic analyzer,
let's look in a bit
more detail at

what a logic analyzer is. Up to
now, we've used the term "logic
analyzer" rather loosely. In fact,
most logic analyzers are really
two analyzers in one.

The first part is a timing
analyzer, while the second part
is a state analyzer. Each has
specific functions that we will
talk about in the following
sections.

Figure 2.1 An analyzer with a built in pattern generator and an analyzer with a built in scope.
5

What’s a Timing Analyzer?
A timing analyzer is the part of
a logic analyzer that is
analogous to an oscilloscope.
As a matter of fact, they can be
thought of as close cousins.

The timing analyzer displays
information in the same general
form as a scope, with the
horizontal axis representing
time and the vertical axis as
voltage amplitude. Because the
waveforms on both instruments
are time-dependent, the
displays are said to be in the
"time domain".

Choosing the Right

Sampling Method

A timing analyzer works by
sampling the input waveforms
to determine whether they are
high or low. It cares about only
one user-defined voltage-
threshold. If the signal is above
threshold when it samples, it
will be displayed as a 1 or high
by the analyzer.

By the same criterion, any
signal sampled that is below
threshold is displayed as a 0 or
low. From these sample points,
a list of ones and zeros is
generated that represents a
one-bit picture of the input
waveform.

As far as the analyzer is
concerned, the waveform is
either high or low – no
intermediate steps. This list is
stored in memory and is also
used to reconstruct a one-bit
picture of the input waveform,
as shown in figure 2.2.

A timing analyzer is like a
digitizing scope with one bit of
vertical resolution. With one bit
of resolution, you can display
only two states – high or low.

Figure 2.2 Timing analyzer sample points
6

Notice the display shown in
figure 2.3. These displays are
actually the same signal (a sine
wave) displayed by a digitizing
scope and a timing analyzer.

This tendency to square
everything up would seem to
limit the usefulness of a timing
analyzer. We should remember,
however, that it is not intended
as a parametric instrument. If
you want to check rise time of a
signal with an analyzer, you
should use a scope. But if you
need to verify timing
relationships among several or
hundreds of lines by seeing
them all together, a timing
analyzer is the right choice.

For example, imagine that we
have dynamic RAM in a system
that must be refreshed every
2 ms. To ensure that everything
in memory is refreshed within
that 2 ms, a counter is used to
count up sequentially through
all rows of the RAMs and
refresh each. If we want to
make certain that the counter
does indeed count up through
all rows before starting over, a
timing analyzer can be set to
trigger when the counter starts
and display all of the counts.
Parametrics are not of great
concern here – we merely want
to check that the counter
counts from 1 to N and then
starts over.

Figure 2.3 The same signal displayed by an oscilloscope and a timing analyzer
7

When the timing analyzer
samples an input line, it is
either high or low. If the line is
at one state (high or low) on
one sample and the opposite
state on the next sample, the
analyzer "knows" that the input
signal transitioned at sometime
in between the two samples. It
doesn't know when, so it places
the transition point at the next
sample, as shown in figure 2.4.
This presents some ambiguity
as to when the transition
actually occurred and when it is
displayed by the analyzer.

Worst case for this ambiguity is
one sample period, assuming
that the transition occurred
immediately after the previous
sample point.

With this technique, however,
there is a trade-off between
resolution and total acquisition
time. Remember that every
sampling point uses one
memory location. Thus, the
higher the resolution (faster
sampling rate), the shorter the
acquisition window.

Figure 2.4 Timing analyzer sampling an input line
8

Transitional Sampling

When we capture data on an
input line with data bursts, like
in figure 2.5, we have to adjust
the sampling rate to high
resolution (e.g. 4 ns) to capture
the fast pulses at the beginning.
This means that a timing
analyzer with 4K (4096
samples) memory would stop
acquiring data after 16.4 µs and
the second data burst could not
be captured.

Note that we sample and store
data for a long time where
there is no activity. This uses
up logic analyzer memory
without providing additional
information.

What we need to know is when
these transitions occur and if
they are positive or negative.
Transitional timing, however,
uses memory efficiently.

To accomplish this, we could
use a "transition detector" at
the input of the timing analyzer
together with a counter. The
timing analyzer will now store
only those samples that were
preceded by a transition,
together with the elapsed time
from the last transition. Thus
we use only two memory
locations per transition and no
memory at all if there is no
activity at the input. This
technique is called "transitional
timing" and is used in the
1660/70 family of logic
analyzers.

In our example, we can not only
capture the second burst, but
also the third, fourth, and fifth,
depending on how many pulses
per burst are present. At the
same time, we can keep the
timing resolution as high as
4 ns (figure 2.6).

We can now talk about
"effective memory depth,"
which equals the total time
data is captured divided by the
sampling period (4 ns).

Note: This is a conceptual
description of the transitional
timing technique.

Figure 2.6 Sampling with a transition detector

Figure 2.5 Sampling at high resolution
9

Glitch Capture

One headache of digital
systems is the infamous
"glitch". Glitches have a nasty
habit of showing up at the most
inopportune times with the
most disastrous results. How do
you capture a glitch that occurs
once every 36 hours and sends
your system into the weeds?
Once again the timing analyzer
comes to the rescue! Agilent
Technologies analyzers have
glitch capture and trigger
capability that make it easy to
track down elusive glitch
problems.

A glitch can be caused by
capacitive coupling between
traces, power supply ripples,
high instantaneous current
demands by several devices, or
any number of other events.
Because they are difficult for
most oscilloscopes to
differentiate from valid
transitions, a scope is generally
not helpful in tracking down a
glitch.

However, since a timing
analyzer samples the incoming
data and can keep track of any
transitions that occur between
samples, it can readily
recognize a glitch. In the case
of an analyzer, a glitch is
defined as any transition that
crosses logic threshold more
than once between samples
(figure 2.7).

The analyzer already keeps
track of all single transitions
that occur between samples, as
we discussed before. To
recognize a glitch, we "teach"
the analyzer to keep track of all
multiple transitions and display
them as glitches.

While displaying glitches is a
useful capability, it can also be
helpful to have the ability to
trigger on a glitch and display
data that occurred before it.
This can help us to determine
what caused the glitch. This
capability also enables the
analyzer to capture data only
when we want it – when the
glitch occurred.

Think about the example we
mentioned in the beginning
paragraph of this section. We
have a system that crashes
periodically because a glitch
appears on one of the lines.
Since it occurs infrequently, to
store data all the time
(assuming we had enough
storage capability) would result
in an incredible amount of
information to sort through.
Another alternative is to use an
analyzer without glitch trigger
capability and sit in front of the
machine pressing the RUN
button and waiting until you
see the glitch.

Unfortunately, neither of the
above are practical alternatives.
If we can tell the analyzer to
trigger on a glitch, it can stop
when it finds one, capturing all
the data that happened before
it. We let the analyzer be the
baby-sitter and when the
system crashes, we have a
record of what led up to the
error.

Figure 2.7 A glitch
10

Triggering the Timing

Analyzer

Another term that should be
familiar to oscilloscope users is
"triggering". It is also used in
logic analyzers, but is often
called "trace point." Unlike an
oscilloscope which starts the
trace right after the trigger, a
logic analyzer continuously
captures data and stops the
acquisition after the trace point
is found to display the data.
Thus a logic analyzer can show
information prior to the trace
point, which is known as
negative time, as well as
information after the trace
point.

Pattern Trigger

Setting trace specifications on a
timing analyzer is a bit different
than setting trigger level and
slope on an oscilloscope. Many
analyzers trigger on a pattern
of highs and lows across input
lines.

Notice the menu in figure 2.8.
We have told the analyzer to
start capturing data when
channels 0, 2, 4 and 6 of
"INT4"are high (logical 1) and
when channels 1, 3, 5, and 7 are
low (logical 0).

Figure 2.9 shows the resulting
display with the line in the
middle indicating the trace
point. At the trace point
channels 0, 2, 4 and 6 are all
high while channels 1, 3, 5, and
7 are low.

To make things easier for some
users, the trigger point on most
analyzers can be set not only in
binary (1's and 0's) but in hex,
octal, ASCII, or decimal. For
instance, to set the previous
example in hex, the trigger
specification would be 55
instead of 0101 0101. Using hex
for the trigger point is
particularly helpful when
looking at buses that are 4, 8,
16, 24, or 32 bits wide. Imagine
how cumbersome it would be to
set a specification for a 24-bit
bus in binary!

Figure 2.8 INT4 set to trigger on a pattern of highs and lows

Figure 2.9 Waveform with the trace point
 11

Edge Trigger

Edge triggering is a familiar
concept to those accustomed to
using an oscilloscope. When
adjusting the "trigger level"
knob on a scope, you could
think of it as setting the level of
a voltage comparator that tells
the scope to trigger when the
input voltage crosses that level.
A timing analyzer works
essentially the same on edge
triggering except that the
trigger level is preset to logic
threshold.

Why include edge triggering in
a timing analyzer? While many
logic devices are level-
dependent, clock and control
signals of these devices are
often edge-sensitive. Edge
triggering allows you to start
capturing data as the device is
clocked.

As a simple example, take the
case of an edge-triggered shift
register that is not shifting data
correctly. Is the problem with
the data or the clock edge? In
order to check the device, we
need to verify the data when it
is clocked – on the clock edge
(figure 2.10).

The analyzer can be told to
capture data when the clock
edge occurs (rising or falling)
and catch all of the outputs of
the shift register. Of course, in
this case we would have to
delay the trace point to take
care of the propagation delay
through the shift register.

Figure 2.10 Edge-triggered shift register
12

What’s a State Analyzer?
If you've never used a state
analyzer, you may think it's an
incredibly complex instrument
that would take a large time
investment to master.
"Besides," you say to yourself,
"what use could I have for a
state analyzer? I design
hardware."

The truth is, many hardware
designers find a state analyzer
to be a very valuable tool,
especially when tracking down
bugs in software or hardware. It
can eliminate "finger-pointing"
between hardware and
software teams when a problem
does come up. Plus the state
analyzer is not any more
difficult to understand than the
timing analyzer.

In the first part of this
application note we talked
about one of two major parts of
a logic analyzer – the timing
analyzer. Next we will talk
about the other major part of
the logic analyzer – the state
analyzer.

When Should I Use a

State Analyzer?

If we want to understand when
to use a state analyzer, we need
to know first what is a "state." A
"state" for a logic circuit is a
sample of a bus or line when its
data is valid.

For example, take a simple "D"
flip-flop, like the one shown in
figure 2.11. Data at the "D"
input will not be valid until a
positive-going clock edge
comes along. Thus, a state for
the flip-flop is when the
positive clock edge occurs.

Now imagine that we have eight
of these flip-flops in parallel. All
eight are connected to the
same clock signal (figure 2.12).

When a positive transition
occurs on the clock line, all
eight will capture data at their
"D" inputs. Again, a state
occurs each time there is a
positive transition on the clock
line. These eight lines are
analogous to a microprocessor
bus.

If we connected a state
analyzer to these eight lines
and told it that a positive
transition on the clock line is
when we want to collect data,
the analyzer would do just that.
Any activity on the inputs will
not be captured by the state
analyzer unless the clock is
going high.

Figure 2.11 D flip-flop

Figure 2.12 Eight D flip-flops in parallel connected to the same clock signal
 13

This points up the major
difference between a timing
and a state analyzer. The timing
analyzer has an internal clock
to control sampling, so it
asynchronously samples the
system under test. A state
analyzer synchronously
samples the system since it gets
its sampling clock from the
system.

As a rule of thumb, you might
remember to use a state
analyzer to check "what"
happened on a bus and a timing
analyzer to see "when" it
happened. Therefore, a state
analyzer generally displays data
in a listing format and a timing
analyzer displays data as a
waveform diagram. We have to
be extremely careful not to
misinterpret the data when the
logic analyzer is capable of
displaying state data as a
waveform diagram and timing
data as a listing.

Understanding Clocks

In the timing analyzer, sampling
is under direction of a single
internal clock. That makes
things very simple. However, in
the world of microprocessors, a
system may have several
"clocks." Let's look at a brief
example.

Suppose for a moment that we
want to trigger on a specific
address in RAM and see what
data is stored there. Further,
we'll assume that the system
uses a Zilog Z80.

During a read or write cycle,
the Z80 first puts an address on
the address bus. Next it asserts
MREQ, showing that the
address is valid for a memory
read or write. Last, the RD or
WR line is asserted, depending
on whether we are doing a read
or write. The WR line is
asserted only after the data on
the bus is valid.

In order to capture addresses
from the Z80 with our state
analyzer, we will want to
capture when MREQ line goes
low. But to capture data, we
will want the analyzer to
sample when the WR line goes
low (write cycle) or when RD
goes low (read cycle). Some
microprocessors multiplex data
and address on the same lines.
The analyzer must be able to
clock in information from the
same lines but with different
clocks.

This, in essence, acts as a
demultiplexer to capture an
address at the proper time and
then catch data that occurs on
the same lines.
14

Triggering the State

Analyzer

Similar to a timing analyzer, a
state analyzer has the
capability to qualify the data we
want to store. If we are looking
for a specific pattern of highs
and lows on the address bus,
we can tell the analyzer to start
storing when it finds that
pattern and to continue storing
until the analyzer's memory is
full.

In the following example, we
have set the trigger point as
406F6 (hexadecimal)
(figure 2.13). In this case we
want to find out what is in
location 406F6, so we set the
data trigger as don't cares
(XXXX). This tells the analyzer
to trigger on address 406F6
regardless of what the data is at
that point.

The analyzer captured address
406F6 and all following states.
Notice that data is 101F at
address 406F6 (figure 2.14),
and that all of the information
is displayed in hexadecimal
format. We could display it in
binary, if that is helpful.
However, it may be more
helpful to have the hex
decoded into assembly code.

If you specify that all
information on the buses is to
be displayed in hex, you will get
a display that resembles the
one in figure 2.14.

Figure 2.13 Trigger setup for the state analyzer

Figure 2.14 Data captured by the state analyzer
 15

What do these hex codes
mean? In the case of a
processor, specific hex
characters comprise an
instruction. If you are very
familiar with the hex codes, you
may be able to look at a hex
listing like the one in figure
2.14 and know what instruction
is represented by it. Most of us,
however, can't do that. For that
reason, most analyzer makers
have designed software
packages called disassemblers
or inverse assemblers. The job
of these packages is to translate
the hex codes into assembly
code to make them easier to
read.

For example, figure 2.14 has
101F and 4A00 shown. If we
look those codes up in the
Motorola CPU32 manual we
find that they represent
MOVE.B (move byte) and
TST.B (test byte) instructions.
Rather than having to look each
code up, the inverse assembler
does it for us. Look at figure
2.15 and notice the difference.

Understanding Sequence

Levels

State analyzers have "sequence
levels" that aid triggering and
storage. Sequence levels allow
you to qualify data storage
more accurately than a single
trigger point. This means that
you can more accurately
window in on the data without
storing information you don't
need. Sequence levels usually
look something like this:

1 find xxxx
else on xxxx go to level x

2 then find xxxx
else on xxxx go to level x

3 trigger on xxxx

Sequence levels are especially
useful for getting into a
subroutine from a specific point
in the program.

Figure 2.15 Hex codes translated into assembly code
16

Selective Storage Saves

Memory and Time!

Sequence levels make possible
what we call selective storage.
Selective storage simply means
storing only a portion out of a
larger whole.

For instance, suppose we have
an assembly routine that
calculates the square of a given
number. If the routine is not
calculating the square
correctly, we can tell the state
analyzer to capture that
routine. We do this by first
telling the analyzer to find the
start of the routine. When it
does find the start address, we
then tell it to look for the
ending address while storing
everything in-between. When
the end of the routine is found,
we tell the analyzer to stop
storing (store no states).
Figure 2.16 shows how
selective storage works.

Using Trigger

Functions

Rather than defining each
sequence level from scratch,
you can use pre-defined trigger
functions. A library of common
trigger functions, such as “Find
Nth occurrence of an edge” and
“Find event “n” times”, provide
a simple way to set up the
analyzer to trigger on common
events and conditions.
Functions are available for both
the state and timing acquisition
modes.

You can also use pre-defined
trigger functions as a starting
point for creating custom
functions. When you break
down a function, you gain
access to all the resource
assignment fields and
branching options. You can
change these fields to change
the trigger structure.

You might need to do this to
create a custom trigger
specification or to create loops
and jumps in your trigger
sequence.

Figure 2.16 Selective storage
 17

Put Them All In One Instrument!
33 So far we have
talked about
oscilloscopes,
state and timing
analyzers and their
applications. If you

are designing or servicing
digital hardware, you probably
have applications for each one
of the tools in your area. In this
section we'll talk about how to
use these tools together to
isolate the faults in your system
faster and more efficiently.

Symptoms and Their

Cause

If you troubleshoot digital
circuitry you often have to ask
yourself, "What causes this
symptom?" It might be quite
easy to identify the symptom of
a fault, but you need to find the
cause to fix the problem. Many
times, causes and symptoms
are in different domains. For
example, a glitch on a memory
control line can cause wrong
data to be read from or written
to memory. The symptom
(wrong data) can be found in
the data domain by using a
state analyzer and triggering on
the suspect memory address.
The cause, however, cannot be
identified in the data domain.

A glitch is only identifiable in
the time domain by using either
a timing analyzer or a scope. In
our example, we are more
interested in the size of the
glitch (parameter) and
therefore, the scope is the best
tool for the measurement.

It is also possible that the
symptom is in the time domain
(e.g. a bad handshake signal on
I/O lines), and the cause is in
the data domain (wrong
software I/O routine).
18

Intermodule

Measurements

A measurement which involves
more than one measurement
instrument is called an
"intermodule measurement."
An intermodule measurement
requires that all measurement
tools are integrated in a single
instrument and are able to
capture data simultaneously.
The figure 3.1 shows the
system configuration menu
from a 1670G logic analyzer
system with a built in
oscilloscope. For the 1670G
logic analyzer with a built in
pattern generator, you would
see the pattern generator in
place of the oscilloscope.

Cross-Domain Triggering

In our examples we talked
about triggering a module
(state, timing analyzer or
scope) on the symptom of the
problem. Once the symptom
occurs and the appropriate
analyzer triggers, the module
that monitors the cause has to
start capturing data. This is
achieved by arming one module
from the trigger of the other
module. For full functionality it
is necessary that each module
can receive and send trigger
signals. The bus, on which
these trigger signals are
transmitted, is called the
"intermodule bus" or IMB
(figure 3.1).

Figure 3.1 System configuration menu and the intermodule bus

Setting up an intermodule measurement
 19

Cross-Domain Time

Correlation

Once we have successfully
triggered all our measurement
modules and finished data
capture, we need to look at the
captured data. We are all
familiar with the waveform
display of a scope and
discussed how to present the
data captured by a state or
timing analyzer earlier. In order
to correlate from one domain to
another, it is convenient to
display data from both domains
on one screen. But how can we
correlate between state and
timing other than the trace
point? Remember, the timing
analyzer uses an internal
sampling clock that is
asynchronous to the system,
while the state analyzer
samples synchronously to the
target system. If we count the
time between the external state
samples, we have enough time
information to correlate from
any point of the timing analyzer
waveform to the appropriate
location of the state analyzer
listing.

Application Example

In figure 3.2 you see the state
analyzer is used to trigger on a
certain memory access. Both
the timing analyzer and scope
are triggered by the state
analyzer to provide timing
information over multiple
channels as well as parametric
information on fewer channels.
Note that the cursors are used
to correlate between time
domain (scope and timing
analyzer) and data domain
(state analyzer).

Figure 3.2 Cross-domain measurement
20

How Do I Connect To My Target System?
Capacitance
Standard CMOS
Delta T

High Speed
CMOS Delta T

15 pF 25 ns 2.5 ns

8 pF 13 ns 1.3 ns

2 pF 3 ns 0.3 ns

44 So far we've talked
about some of the
differences
between scopes,
timing and state
analyzers. Before

we're ready to apply these new
tools, we should talk about one
more subject – the probing
system.

From using an oscilloscope,
you're probably familiar with
passive probes. A scope probe
is designed to gain easy access
to the target system while
minimizing the signal
distortion. Since we want to
look at parametric information
like voltage levels and rise
times, it is important that the
probe doesn't load the circuit
under test significantly. A
typical scope probe has 1 MΩ
impedance shunted by 10 pF,
depending on the bandwidth
required.

On the other hand, a logic
analyzer probe is designed to
allow connection of a high
number of channels to the
target system easily by trading
off amplitude accuracy of the
signal under test. Remember
that a logic analyzer only
distinguishes between two
voltage levels! Traditionally,
logic analyzers used active
probe pods, which had an
integrated signal detection
circuitry for eight channels
integrated. From these pods,
we could connect with leads to
the circuit under test.

The typical impedance of a
logic analyzer probe is in the
area of 100 kΩ shunted by 8 pF
at the input of the active pod.
The connecting wires, however,
add another 8 pF stray
capacitance, giving a total of 16
pF per channel.

Resistive vs. Capacitive

Loading

How does the probe impedance
affect my measurement? Two
sources of loading, resistive and
capacitive are the main cause
of signal distortion. Resistive
loading affects the amplitude of
the output through a resistive
divider effect.

Capacitive loading affects the
timing of the signal under test
by rounding and slewing the
edges.

Amplitude errors from resistive
loading are not significant
enough to affect most circuit's
performance, even when
probing with the 1 GHz scope
probes with 10 kΩ resistance.
In fact, most logic families can
operate correctly with as much
as a 10% error in amplitude.
Because most of these digital
ICs exhibit typical output
impedance in the low hundreds
of ohms or less, you can use a
probe with tip resistance
measuring a few kΩ.

The capacitive loading of
probes becomes more
important as clock rates
continue to increase in new
designs. Because of this
increase of clock rates, circuits
are more sensitive to timing
errors of even a few
nanoseconds. The basic timing-
error immunity, on the other
hand, is limited by a circuit's
clock rate. A CMOS circuit that
drives a given load may operate
correctly even with a higher
clock rate, but the extra
capacitive loading of a probe on
that circuit can produce
unexpected timing problems.

Table 4.1 Increases in CMOS gate delay due to probe capacitance
 21

Probing Solutions

Physical connections to digital
systems for debugging must be
reliable and convenient to
deliver accurate data to the
logic analyzer with minimum
intrusion to the target system
being debugged. Agilent
Technologies offers a broad
selection of probes and
accessories for connection to
target systems.

A common probing solution is
the passive probe with sixteen
channels per cable. Each
channel is terminated at both
ends with 100kΩ and 8 pF. You
can best compare the passive
probe electrically with the
scope probe. The advantage of
the passive probing system,
besides small size and high
reliability, is that you can
terminate the probe right at the
point of connection to the
target system. This avoids
additional stray capacitance
due to the wires from the larger
active pods to the circuit under
test. As a result, your circuit
under test only "sees" 8 pF load
capacitance instead of 16 pF
with previous probing systems.

Analysis Probe and Other

Accessories

Connecting a state analyzer to a
microprocessor system requires
some effort in terms of
mechanical connection and
clock selection. Remember, we
have to clock the state analyzer
whenever data or addresses on
the bus are valid. With some
microprocessors it might be
necessary to use external
circuitry to decode several
signals to derive the clock for
the state analyzer. An analysis
probe provides not only fast,
reliable and correct mechanical
connection to your target
system, but also the necessary
electrical adaptation like
clocking and demultiplexing to
capture your system's
operation correctly.

Some microprocessors prefetch
information from memory that
may never get executed.
Analysis probes can also
distinguish prefetched
information from executed.
Furthermore, an analysis probe
typically comes together with a
disassembler to decode the
hexadecimal information into
microprocessor mnemonics, as
discussed earlier.

Figure 4.1 An analysis probe
22

Summary
We hope this application note
has helped you gain a better
understanding of what a logic
analyzer is and does. Since
most analyzers are made up of
two major parts, timing and
state, we have covered them
separately. But together, they
make up a powerful tool for the
digital designer.

The timing analyzer is closely
akin to the oscilloscope, but is
better suited to bus-type
structures or applications
where you are dealing with
many lines. It also has the
ability to trigger on patterns
among the lines, or even
glitches.

A state analyzer is most often
viewed as a software tool. In
reality, it also has many uses in
the hardware domain. Because
it gets its clock from the system
under test, it can be used to
catch data when the system
sees it – on the system's clock.

Armed with this fundamental
knowledge, you can now use a
logic analyzer with confidence.
 23

www.agilent.com
For more about Agilent Technologies test and
measurement products, applications, services,
and for a current sales office listing, visit
http://www.agilent.com/find/tmdir. You can
also contact one of the following centers and
ask for a test and measurement sales
representative.

United States:

Agilent Technologies
Test and Measurement Call Center
P.O. Box 4026
Englewood, Colorado 80155-4026
(tel) 1 800 452 4844

Canada:

Agilent Technologies Canada Inc.
5150 Spectrum Way
Mississauga, Ontario
L4W 5G1
(tel) 1 877 894 4414

Europe:

Agilent Technologies
Test & Measurement
European Marketing Organization
P.O. Box 999
1180 AZ Amstelveen
The Netherlands
(tel) (31 20) 547 9999

Japan:

Agilent Technologies Japan Ltd.
Call Center
9-1, Takakura-Cho, Hachioji-Shi,
Tokyo 192-8510, Japan
(tel) (81) 426 56 7832
(fax) (81) 426 56 7840

Latin America:

Agilent Technologies
Latin American Region Headquarters
5200 Blue Lagoon Drive, Suite #950
Miami, Florida 33126
U.S.A.
(tel) (305) 267-4245
(fax) (305) 267-4286

Australia/New Zealand:

Agilent Technologies Australia Pty Ltd.
347 Burwood Highway
Forest Hill, Victoria 3131
(tel) 1 800 629 485 (Australia)
(fax) (61 3) 9272 0749
(tel) 0 800 738 378 (New Zealand)
(fax) (64 4) 802 6881

Asia Pacific:

Agilent Technnologies
24/F, Cityplaza One, 1111 King's Road,
Taikoo Shing, Hong Kong
(tel) (852) 3197 7777
(fax) (852) 2506 9284

Technical datais subject to change
5968-8291E 03/06
A

	Feeling Comfortable with Logic Analyzers
	Oscilloscope or Logic Analyzer?
	When Should I Use A Scope?
	When Should I Use A Logic Analyzer?

	What’s a Logic Analyzer?
	What’s a Timing Analyzer?
	Choosing the Right Sampling Method
	Transitional Sampling
	Glitch Capture
	Triggering the Timing Analyzer
	Pattern Trigger
	Edge Trigger

	What’s a State Analyzer?
	When Should I Use a State Analyzer?
	Understanding Clocks
	Triggering the State Analyzer
	Understanding Sequence Levels
	Selective Storage Saves Memory and Time!
	Using Trigger Functions

	Put Them All In One Instrument!
	Symptoms and Their Cause
	Intermodule Measurements
	Cross-Domain Triggering
	Cross-Domain Time Correlation
	Application Example

	How Do I Connect To My Target System?
	Resistive vs. Capacitive Loading
	Probing Solutions
	Analysis Probe and Other Accessories
	Summary

