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Feeling Comfortable with 

Logic Analyzers

You need to simultaneously 
look at the inputs and outputs 
of a 16-bit counter to determine 
a timing error and you have 
only a 2-channel scope. How do 
you look at them all? You've 
just developed timing diagrams 
for a board full of digital 
circuitry. How do you verify 
them? An intermittent glitch 
appears to occur on one of the 
data lines of your 
microprocessor system, causing 
the processor to get incorrect 
data. You can't trigger on just 
the glitch with your 
oscilloscope. What do you use 
to capture and analyze it?

With the wrong tool, solving 
these kinds of problems can be 
very time consuming. Success 
may depend on knowing which 
tool can get the job done 
quickly. For the above 
problems, the best solution is 
the logic analyzer.

This application note is 
intended as a quick overview of 
logic analyzer basics. With it, 
you can cut down on the time 
investment needed to learn a 
new instrument. It doesn't 
cover many detailed 
measurements, but it does give 
you a good idea of what a logic 
analyzer can do. We talk about 
questions like "Why should I 
use a logic analyzer?" and 
"What will one do for me?"
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Oscilloscope or Logic Analyzer?
11 When given the 
choice between 
using an 
oscilloscope or a 
logic analyzer, 
many people will 

choose an oscilloscope. Why? 
Because a scope is more 
familiar to most users. 
However, a scope has some 
shortcomings that limit its 
usefulness in some 
applications. A logic analyzer 
may yield more useful 
information in many of these 
applications. Because of some 
overlapping capabilities 
between a scope and a logic 
analyzer, either may be used in 
some cases. How do you 
determine which is better for 
your application? The next few 
paragraphs give some basic 
guidelines.

When Should I Use A 

Scope?

• When you need to see small 
voltage excursions on your 
signals.

• When you need high time-
interval accuracy.

Generally, an oscilloscope is the 
instrument to use when you 
need high vertical or voltage 
resolution. To say it another 
way, if you need to see every 
voltage excursion, like those 
shown in figure 1.1, you should 
use a scope. 

Many scopes, including the new 
generation digitizing ones, can 
also provide very high time-
interval resolution. That is, 
they can measure the time 
interval between two events 
with very high accuracy. 
Overall, an oscilloscope is to be 
used when you need 
parametric information.

Figure 1.1  Oscilloscope waveform
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When Should I Use A 

Logic Analyzer?

•When you need to see many 
signals at once.

•When you need to look at 
signals in your system the same 
way your hardware does.

•When you need to trigger on a 
pattern of highs and lows on 
several lines and see the result.

Logic analyzers grew out of 
oscilloscopes. They present 
data in the same general way 
that a scope does; the 
horizontal axis is time, the 
vertical axis is voltage 
amplitude. But, rather than 
providing high voltage 
resolution or time interval 
accuracy like a scope, a logic 
analyzer can capture and 
display hundreds of signals at 
once, something that a scope 
can not do.

A logic analyzer reacts the 
same way as your logic circuit 
does when a single threshold is 
crossed by a signal in your 
system. It will recognize the 
signal to be either low or high. 
It can also trigger on patterns 
of highs and lows on these 
signals. 

So when do you use a logic 
analyzer? When you need to 
look at more lines than your 
oscilloscope can show you, 
provided you do not need 
precise time interval 
information. If you need to look 
at parametric information, a 
logic analyzer is not a good 
choice (figure 1.2).

Logic analyzers are particularly 
useful when looking at time 
relationships or data on a bus – 
e.g. a microprocessor address, 
data, or control bus. It can 
decode the information on 
microprocessor buses and 
present it in a meaningful form.

Generally, when you are past 
the parametric stage of design, 
and are interested in timing 
relationships among many 
signals and need to trigger on 
patterns of logic highs and 
lows, the logic analyzer is the 
right tool.

Figure 1.2  Oscilloscope and timing waveforms
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What’s a Logic Analyzer?
22 Now that we've 
talked a little 
about when to use 
a logic analyzer, 
let's look in a bit 
more detail at 

what a logic analyzer is. Up to 
now, we've used the term "logic 
analyzer" rather loosely. In fact, 
most logic analyzers are really 
two analyzers in one.

 

The first part is a timing 
analyzer, while the second part 
is a state analyzer. Each has 
specific functions that we will 
talk about in the following 
sections.

Figure 2.1 An analyzer with a built in pattern generator and an analyzer with a built in scope.
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What’s a Timing Analyzer?
A timing analyzer is the part of 
a logic analyzer that is 
analogous to an oscilloscope. 
As a matter of fact, they can be 
thought of as close cousins. 

The timing analyzer displays 
information in the same general 
form as a scope, with the 
horizontal axis representing 
time and the vertical axis as 
voltage amplitude. Because the 
waveforms on both instruments 
are time-dependent, the 
displays are said to be in the 
"time domain".

Choosing the Right 

Sampling Method

A timing analyzer works by 
sampling the input waveforms 
to determine whether they are 
high or low. It cares about only 
one user-defined voltage-
threshold. If the signal is above 
threshold when it samples, it 
will be displayed as a 1 or high 
by the analyzer.

By the same criterion, any 
signal sampled that is below 
threshold is displayed as a 0 or 
low. From these sample points, 
a list of ones and zeros is 
generated that represents a 
one-bit picture of the input 
waveform. 

As far as the analyzer is 
concerned, the waveform is 
either high or low – no 
intermediate steps. This list is 
stored in memory and is also 
used to reconstruct a one-bit 
picture of the input waveform, 
as shown in figure 2.2. 

A timing analyzer is like a 
digitizing scope with one bit of 
vertical resolution. With one bit 
of resolution, you can display 
only two states – high or low.

Figure 2.2 Timing analyzer sample points
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Notice the display shown in 
figure 2.3. These displays are 
actually the same signal (a sine 
wave) displayed by a digitizing 
scope and a timing analyzer.

This tendency to square 
everything up would seem to 
limit the usefulness of a timing 
analyzer. We should remember, 
however, that it is not intended 
as a parametric instrument. If 
you want to check rise time of a 
signal with an analyzer, you 
should use a scope. But if you 
need to verify timing 
relationships among several or 
hundreds of lines by seeing 
them all together, a timing 
analyzer is the right choice. 

For example, imagine that we 
have dynamic RAM in a system 
that must be refreshed every 
2 ms. To ensure that everything 
in memory is refreshed within 
that 2 ms, a counter is used to 
count up sequentially through 
all rows of the RAMs and 
refresh each. If we want to 
make certain that the counter 
does indeed count up through 
all rows before starting over, a 
timing analyzer can be set to 
trigger when the counter starts 
and display all of the counts. 
Parametrics are not of great 
concern here – we merely want 
to check that the counter 
counts from 1 to N and then 
starts over.

Figure 2.3 The same signal displayed by an oscilloscope and a timing analyzer
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When the timing analyzer 
samples an input line, it is 
either high or low. If the line is 
at one state (high or low) on 
one sample and the opposite 
state on the next sample, the 
analyzer "knows" that the input 
signal transitioned at sometime 
in between the two samples. It 
doesn't know when, so it places 
the transition point at the next 
sample, as shown in figure 2.4. 
This presents some ambiguity 
as to when the transition 
actually occurred and when it is 
displayed by the analyzer. 

Worst case for this ambiguity is 
one sample period, assuming 
that the transition occurred 
immediately after the previous 
sample point.

With this technique, however, 
there is a trade-off between 
resolution and total acquisition 
time. Remember that every 
sampling point uses one 
memory location. Thus, the 
higher the resolution (faster 
sampling rate), the shorter the 
acquisition window.

Figure 2.4 Timing analyzer sampling an input line
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Transitional Sampling

When we capture data on an 
input line with data bursts, like 
in figure 2.5, we have to adjust 
the sampling rate to high 
resolution (e.g. 4 ns) to capture 
the fast pulses at the beginning. 
This means that a timing 
analyzer with 4K (4096 
samples) memory would stop 
acquiring data after 16.4 µs and 
the second data burst could not 
be captured.

Note that we sample and store 
data for a long time where 
there is no activity. This uses 
up logic analyzer memory 
without providing additional 
information. 

What we need to know is when 
these transitions occur and if 
they are positive or negative. 
Transitional timing, however, 
uses memory efficiently.

To accomplish this, we could 
use a "transition detector" at 
the input of the timing analyzer 
together with a counter. The 
timing analyzer will now store 
only those samples that were 
preceded by a transition, 
together with the elapsed time 
from the last transition. Thus 
we use only two memory 
locations per transition and no 
memory at all if there is no 
activity at the input. This 
technique is called "transitional 
timing" and is used in the
1660/70 family of logic 
analyzers. 

In our example, we can not only 
capture the second burst, but 
also the third, fourth, and fifth, 
depending on how many pulses 
per burst are present. At the 
same time, we can keep the 
timing resolution as high as 
4 ns (figure 2.6).

We can now talk about 
"effective memory depth," 
which equals the total time 
data is captured divided by the 
sampling period (4 ns).

Note: This is a conceptual 
description of the transitional 
timing technique.

Figure 2.6 Sampling with a transition detector

Figure 2.5 Sampling at high resolution
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Glitch Capture

One headache of digital 
systems is the infamous 
"glitch". Glitches have a nasty 
habit of showing up at the most 
inopportune times with the 
most disastrous results. How do 
you capture a glitch that occurs 
once every 36 hours and sends 
your system into the weeds? 
Once again the timing analyzer 
comes to the rescue! Agilent 
Technologies analyzers have 
glitch capture and trigger 
capability that make it easy to 
track down elusive glitch 
problems.

A glitch can be caused by 
capacitive coupling between 
traces, power supply ripples, 
high instantaneous current 
demands by several devices, or 
any number of other events. 
Because they are difficult for 
most oscilloscopes to 
differentiate from valid 
transitions, a scope is generally 
not helpful in tracking down a 
glitch. 

However, since a timing 
analyzer samples the incoming 
data and can keep track of any 
transitions that occur between 
samples, it can readily 
recognize a glitch. In the case 
of an analyzer, a glitch is 
defined as any transition that 
crosses logic threshold more 
than once between samples 
(figure 2.7).

The analyzer already keeps 
track of all single transitions 
that occur between samples, as 
we discussed before. To 
recognize a glitch, we "teach" 
the analyzer to keep track of all 
multiple transitions and display 
them as glitches.

While displaying glitches is a 
useful capability, it can also be 
helpful to have the ability to 
trigger on a glitch and display 
data that occurred before it. 
This can help us to determine 
what caused the glitch. This 
capability also enables the 
analyzer to capture data only 
when we want it – when the 
glitch occurred.

Think about the example we 
mentioned in the beginning 
paragraph of this section. We 
have a system that crashes 
periodically because a glitch 
appears on one of the lines. 
Since it occurs infrequently, to 
store data all the time 
(assuming we had enough 
storage capability) would result 
in an incredible amount of 
information to sort through. 
Another alternative is to use an 
analyzer without glitch trigger 
capability and sit in front of the 
machine pressing the RUN 
button and waiting until you 
see the glitch. 

Unfortunately, neither of the 
above are practical alternatives. 
If we can tell the analyzer to 
trigger on a glitch, it can stop 
when it finds one, capturing all 
the data that happened before 
it. We let the analyzer be the 
baby-sitter and when the 
system crashes, we have a 
record of what led up to the 
error.

Figure 2.7 A glitch
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Triggering the Timing 

Analyzer

Another term that should be 
familiar to oscilloscope users is 
"triggering". It is also used in 
logic analyzers, but is often 
called "trace point." Unlike an 
oscilloscope which starts the 
trace right after the trigger, a 
logic analyzer continuously 
captures data and stops the 
acquisition after the trace point 
is found to display the data. 
Thus a logic analyzer can show 
information prior to the trace 
point, which is known as 
negative time, as well as 
information after the trace 
point.

Pattern Trigger

Setting trace specifications on a 
timing analyzer is a bit different 
than setting trigger level and 
slope on an oscilloscope. Many 
analyzers trigger on a pattern 
of highs and lows across input 
lines. 

Notice the menu in figure 2.8. 
We have told the analyzer to 
start capturing data when 
channels 0, 2, 4 and 6 of 
"INT4"are high (logical 1) and 
when channels 1, 3, 5, and 7 are 
low (logical 0). 

Figure 2.9 shows the resulting 
display with the line in the 
middle indicating the trace 
point. At the trace point 
channels 0, 2, 4 and 6 are all 
high while channels 1, 3, 5, and 
7 are low.

To make things easier for some 
users, the trigger point on most 
analyzers can be set not only in 
binary (1's and 0's) but in hex, 
octal, ASCII, or decimal. For 
instance, to set the previous 
example in hex, the trigger 
specification would be 55 
instead of 0101 0101. Using hex 
for the trigger point is 
particularly helpful when 
looking at buses that are 4, 8, 
16, 24, or 32 bits wide. Imagine 
how cumbersome it would be to 
set a specification for a 24-bit 
bus in binary!

Figure 2.8 INT4 set to trigger on a pattern of highs and lows

Figure 2.9 Waveform with the trace point
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Edge Trigger

Edge triggering is a familiar 
concept to those accustomed to 
using an oscilloscope. When 
adjusting the "trigger level" 
knob on a scope, you could 
think of it as setting the level of 
a voltage comparator that tells 
the scope to trigger when the 
input voltage crosses that level. 
A timing analyzer works 
essentially the same on edge 
triggering except that the 
trigger level is preset to logic 
threshold. 

Why include edge triggering in 
a timing analyzer? While many 
logic devices are level-
dependent, clock and control 
signals of these devices are 
often edge-sensitive. Edge 
triggering allows you to start 
capturing data as the device is 
clocked. 

As a simple example, take the 
case of an edge-triggered shift 
register that is not shifting data 
correctly. Is the problem with 
the data or the clock edge? In 
order to check the device, we 
need to verify the data when it 
is clocked – on the clock edge 
(figure 2.10).

The analyzer can be told to 
capture data when the clock 
edge occurs (rising or falling) 
and catch all of the outputs of 
the shift register. Of course, in 
this case we would have to 
delay the trace point to take 
care of the propagation delay 
through the shift register.

Figure 2.10 Edge-triggered shift register
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What’s a State Analyzer?
If you've never used a state 
analyzer, you may think it's an 
incredibly complex instrument 
that would take a large time 
investment to master. 
"Besides," you say to yourself, 
"what use could I have for a 
state analyzer? I design 
hardware."

The truth is, many hardware 
designers find a state analyzer 
to be a very valuable tool, 
especially when tracking down 
bugs in software or hardware. It 
can eliminate "finger-pointing" 
between hardware and 
software teams when a problem 
does come up. Plus the state 
analyzer is not any more 
difficult to understand than the 
timing analyzer.

In the first part of this 
application note we talked 
about one of two major parts of 
a logic analyzer – the timing 
analyzer. Next we will talk 
about the other major part of 
the logic analyzer – the state 
analyzer.

When Should I Use a 

State Analyzer?

If we want to understand when 
to use a state analyzer, we need 
to know first what is a "state." A 
"state" for a logic circuit is a 
sample of a bus or line when its 
data is valid.

For example, take a simple "D" 
flip-flop, like the one shown in 
figure 2.11. Data at the "D" 
input will not be valid until a 
positive-going clock edge 
comes along. Thus, a state for 
the flip-flop is when the 
positive clock edge occurs.

Now imagine that we have eight 
of these flip-flops in parallel. All 
eight are connected to the 
same clock signal (figure 2.12).

When a positive transition 
occurs on the clock line, all 
eight will capture data at their 
"D" inputs. Again, a state 
occurs each time there is a 
positive transition on the clock 
line. These eight lines are 
analogous to a microprocessor 
bus.

If we connected a state 
analyzer to these eight lines 
and told it that a positive 
transition on the clock line is 
when we want to collect data, 
the analyzer would do just that. 
Any activity on the inputs will 
not be captured by the state 
analyzer unless the clock is 
going high.

Figure 2.11 D flip-flop

Figure 2.12 Eight D flip-flops in parallel connected to the same clock signal
 13



This points up the major 
difference between a timing 
and a state analyzer. The timing 
analyzer has an internal clock 
to control sampling, so it 
asynchronously samples the 
system under test. A state 
analyzer synchronously 
samples the system since it gets 
its sampling clock from the 
system.

As a rule of thumb, you might 
remember to use a state 
analyzer to check "what" 
happened on a bus and a timing 
analyzer to see "when" it 
happened. Therefore, a state 
analyzer generally displays data 
in a listing format and a timing 
analyzer displays data as a 
waveform diagram. We have to 
be extremely careful not to 
misinterpret the data when the 
logic analyzer is capable of 
displaying state data as a 
waveform diagram and timing 
data as a listing.

Understanding Clocks

In the timing analyzer, sampling 
is under direction of a single 
internal clock. That makes 
things very simple. However, in 
the world of microprocessors, a 
system may have several 
"clocks." Let's look at a brief 
example.

Suppose for a moment that we 
want to trigger on a specific 
address in RAM and see what 
data is stored there. Further, 
we'll assume that the system 
uses a Zilog Z80. 

During a read or write cycle, 
the Z80 first puts an address on 
the address bus. Next it asserts 
MREQ, showing that the 
address is valid for a memory 
read or write. Last, the RD or 
WR line is asserted, depending 
on whether we are doing a read 
or write. The WR line is 
asserted only after the data on 
the bus is valid. 

In order to capture addresses 
from the Z80 with our state 
analyzer, we will want to 
capture when MREQ line goes 
low. But to capture data, we 
will want the analyzer to 
sample when the WR line goes 
low (write cycle) or when RD 
goes low (read cycle). Some 
microprocessors multiplex data 
and address on the same lines. 
The analyzer must be able to 
clock in information from the 
same lines but with different 
clocks. 

This, in essence, acts as a 
demultiplexer to capture an 
address at the proper time and 
then catch data that occurs on 
the same lines.
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Triggering the State 

Analyzer

Similar to a timing analyzer, a 
state analyzer has the 
capability to qualify the data we 
want to store. If we are looking 
for a specific pattern of highs 
and lows on the address bus, 
we can tell the analyzer to start 
storing when it finds that 
pattern and to continue storing 
until the analyzer's memory is 
full.

In the following example, we 
have set the trigger point as 
406F6 (hexadecimal) 
(figure 2.13). In this case we 
want to find out what is in 
location 406F6, so we set the 
data trigger as don't cares 
(XXXX). This tells the analyzer 
to trigger on address 406F6 
regardless of what the data is at 
that point.

The analyzer captured address 
406F6 and all following states. 
Notice that data is 101F at 
address 406F6 (figure 2.14), 
and that all of the information 
is displayed in hexadecimal 
format. We could display it in 
binary, if that is helpful. 
However, it may be more 
helpful to have the hex 
decoded into assembly code.

If you specify that all 
information on the buses is to 
be displayed in hex, you will get 
a display that resembles the 
one in figure 2.14. 

Figure 2.13 Trigger setup for the state analyzer

Figure 2.14 Data captured by the state analyzer
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What do these hex codes 
mean? In the case of a 
processor, specific hex 
characters comprise an 
instruction. If you are very 
familiar with the hex codes, you 
may be able to look at a hex 
listing like the one in figure 
2.14 and know what instruction 
is represented by it. Most of us, 
however, can't do that. For that 
reason, most analyzer makers 
have designed software 
packages called disassemblers 
or inverse assemblers. The job 
of these packages is to translate 
the hex codes into assembly 
code to make them easier to 
read. 

For example, figure 2.14 has 
101F and 4A00 shown. If we 
look those codes up in the 
Motorola CPU32 manual we 
find that they represent 
MOVE.B (move byte) and 
TST.B (test byte) instructions. 
Rather than having to look each 
code up, the inverse assembler 
does it for us. Look at figure 
2.15 and notice the difference. 

Understanding Sequence 

Levels

State analyzers have "sequence 
levels" that aid triggering and 
storage. Sequence levels allow 
you to qualify data storage 
more accurately than a single 
trigger point. This means that 
you can more accurately 
window in on the data without 
storing information you don't 
need. Sequence levels usually 
look something like this:

1 find xxxx
else on xxxx go to level x

2 then find xxxx
else on xxxx go to level x

3 trigger on xxxx

Sequence levels are especially 
useful for getting into a 
subroutine from a specific point 
in the program.

Figure 2.15 Hex codes translated into assembly code
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Selective Storage Saves 

Memory and Time!

Sequence levels make possible 
what we call selective storage. 
Selective storage simply means 
storing only a portion out of a 
larger whole. 

For instance, suppose we have 
an assembly routine that 
calculates the square of a given 
number. If the routine is not 
calculating the square 
correctly, we can tell the state 
analyzer to capture that 
routine. We do this by first 
telling the analyzer to find the 
start of the routine. When it 
does find the start address, we 
then tell it to look for the 
ending address while storing 
everything in-between. When 
the end of the routine is found, 
we tell the analyzer to stop 
storing (store no states). 
Figure 2.16 shows how 
selective storage works.

Using Trigger

Functions

Rather than defining each 
sequence level from scratch, 
you can use pre-defined trigger 
functions. A library of common 
trigger functions, such as “Find 
Nth occurrence of an edge” and 
“Find event “n” times”, provide 
a simple way to set up the 
analyzer to trigger on common 
events and conditions. 
Functions are available for both 
the state and timing acquisition 
modes. 

You can also use pre-defined 
trigger functions as a starting 
point for creating custom 
functions. When you break 
down a function, you gain 
access to all the resource 
assignment fields and 
branching options. You can 
change these fields to change 
the trigger structure. 

You might need to do this to 
create a custom trigger 
specification or to create loops 
and jumps in your trigger 
sequence. 

Figure 2.16 Selective storage
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Put Them All In One Instrument!
33 So far we have 
talked about 
oscilloscopes, 
state and timing 
analyzers and their 
applications. If you 

are designing or servicing 
digital hardware, you probably 
have applications for each one 
of the tools in your area. In this 
section we'll talk about how to 
use these tools together to 
isolate the faults in your system 
faster and more efficiently.

Symptoms and Their 

Cause

If you troubleshoot digital 
circuitry you often have to ask 
yourself, "What causes this 
symptom?" It might be quite 
easy to identify the symptom of 
a fault, but you need to find the 
cause to fix the problem. Many 
times, causes and symptoms 
are in different domains. For 
example, a glitch on a memory 
control line can cause wrong 
data to be read from or written 
to memory. The symptom 
(wrong data) can be found in 
the data domain by using a 
state analyzer and triggering on 
the suspect memory address. 
The cause, however, cannot be 
identified in the data domain. 

A glitch is only identifiable in 
the time domain by using either 
a timing analyzer or a scope. In 
our example, we are more 
interested in the size of the 
glitch (parameter) and 
therefore, the scope is the best 
tool for the measurement. 

It is also possible that the 
symptom is in the time domain 
(e.g. a bad handshake signal on 
I/O lines), and the cause is in 
the data domain (wrong 
software I/O routine).
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Intermodule 

Measurements

A measurement which involves 
more than one measurement 
instrument is called an 
"intermodule measurement." 
An intermodule measurement 
requires that all measurement 
tools are integrated in a single 
instrument and are able to 
capture data simultaneously. 
The figure 3.1 shows the 
system configuration menu 
from a 1670G logic analyzer 
system with a built in 
oscilloscope. For the 1670G 
logic analyzer with a built in 
pattern generator, you would 
see the pattern generator in 
place of the oscilloscope.

Cross-Domain Triggering

In our examples we talked 
about triggering a module 
(state, timing analyzer or 
scope) on the symptom of the 
problem. Once the symptom 
occurs and the appropriate 
analyzer triggers, the module 
that monitors the cause has to 
start capturing data. This is 
achieved by arming one module 
from the trigger of the other 
module. For full functionality it 
is necessary that each module 
can receive and send trigger 
signals. The bus, on which 
these trigger signals are 
transmitted, is called the 
"intermodule bus" or IMB 
(figure 3.1).

Figure 3.1  System configuration menu and the intermodule bus

Setting up an intermodule measurement
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Cross-Domain Time 

Correlation

Once we have successfully 
triggered all our measurement 
modules and finished data 
capture, we need to look at the 
captured data. We are all 
familiar with the waveform 
display of a scope and 
discussed how to present the 
data captured by a state or 
timing analyzer earlier. In order 
to correlate from one domain to 
another, it is convenient to 
display data from both domains 
on one screen. But how can we 
correlate between state and 
timing other than the trace 
point? Remember, the timing 
analyzer uses an internal 
sampling clock that is 
asynchronous to the system, 
while the state analyzer 
samples synchronously to the 
target system. If we count the 
time between the external state 
samples, we have enough time 
information to correlate from 
any point of the timing analyzer 
waveform to the appropriate 
location of the state analyzer 
listing.

Application Example

In figure 3.2 you see the state 
analyzer is used to trigger on a 
certain memory access. Both 
the timing analyzer and scope 
are triggered by the state 
analyzer to provide timing 
information over multiple 
channels as well as parametric 
information on fewer channels. 
Note that the cursors are used 
to correlate between time 
domain (scope and timing 
analyzer) and data domain 
(state analyzer).

Figure 3.2 Cross-domain measurement
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How Do I Connect To My Target System?
Capacitance
Standard CMOS 
Delta T

High Speed 
CMOS Delta T

15 pF 25 ns 2.5 ns

8 pF 13 ns 1.3 ns

2 pF 3 ns 0.3 ns

44 So far we've talked 
about some of the 
differences 
between scopes, 
timing and state 
analyzers. Before 

we're ready to apply these new 
tools, we should talk about one 
more subject – the probing 
system.

From using an oscilloscope, 
you're probably familiar with 
passive probes. A scope probe 
is designed to gain easy access 
to the target system while 
minimizing the signal 
distortion. Since we want to 
look at parametric information 
like voltage levels and rise 
times, it is important that the 
probe doesn't load the circuit 
under test significantly. A 
typical scope probe has 1 MΩ 
impedance shunted by 10 pF, 
depending on the bandwidth 
required.

On the other hand, a logic 
analyzer probe is designed to 
allow connection of a high 
number of channels to the 
target system easily by trading 
off amplitude accuracy of the 
signal under test. Remember 
that a logic analyzer only 
distinguishes between two 
voltage levels! Traditionally, 
logic analyzers used active 
probe pods, which had an 
integrated signal detection 
circuitry for eight channels 
integrated. From these pods, 
we could connect with leads to 
the circuit under test. 

The typical impedance of a 
logic analyzer probe is in the 
area of 100 kΩ shunted by 8 pF 
at the input of the active pod. 
The connecting wires, however, 
add another 8 pF stray 
capacitance, giving a total of 16 
pF per channel.

Resistive vs. Capacitive 

Loading

How does the probe impedance 
affect my measurement? Two 
sources of loading, resistive and 
capacitive are the main cause 
of signal distortion. Resistive 
loading affects the amplitude of 
the output through a resistive 
divider effect.

Capacitive loading affects the 
timing of the signal under test 
by rounding and slewing the 
edges. 

Amplitude errors from resistive 
loading are not significant 
enough to affect most circuit's 
performance, even when 
probing with the 1 GHz scope 
probes with 10 kΩ resistance. 
In fact, most logic families can 
operate correctly with as much 
as a 10% error in amplitude. 
Because most of these digital 
ICs exhibit typical output 
impedance in the low hundreds 
of ohms or less, you can use a 
probe with tip resistance 
measuring a few kΩ.

The capacitive loading of 
probes becomes more 
important as clock rates 
continue to increase in new 
designs. Because of this 
increase of clock rates, circuits 
are more sensitive to timing 
errors of even a few 
nanoseconds. The basic timing-
error immunity, on the other 
hand, is limited by a circuit's 
clock rate. A CMOS circuit that 
drives a given load may operate 
correctly even with a higher 
clock rate, but the extra 
capacitive loading of a probe on 
that circuit can produce 
unexpected timing problems.

Table 4.1  Increases in CMOS gate delay due to probe capacitance
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Probing Solutions

Physical connections to digital 
systems for debugging must be 
reliable and convenient to 
deliver accurate data to the 
logic analyzer with minimum 
intrusion to the target system 
being debugged. Agilent 
Technologies offers a broad 
selection of probes and 
accessories for connection to 
target systems.

A common probing solution is 
the passive probe with sixteen 
channels per cable. Each 
channel is terminated at both 
ends with 100kΩ and 8 pF. You 
can best compare the passive 
probe electrically with the 
scope probe. The advantage of 
the passive probing system, 
besides small size and high 
reliability, is that you can 
terminate the probe right at the 
point of connection to the 
target system. This avoids 
additional stray capacitance 
due to the wires from the larger 
active pods to the circuit under 
test. As a result, your circuit 
under test only "sees" 8 pF load 
capacitance instead of 16 pF 
with previous probing systems.

Analysis Probe and Other 

Accessories

Connecting a state analyzer to a 
microprocessor system requires 
some effort in terms of 
mechanical connection and 
clock selection. Remember, we 
have to clock the state analyzer 
whenever data or addresses on 
the bus are valid. With some 
microprocessors it might be 
necessary to use external 
circuitry to decode several 
signals to derive the clock for 
the state analyzer. An analysis 
probe provides not only fast, 
reliable and correct mechanical 
connection to your target 
system, but also the necessary 
electrical adaptation like 
clocking and demultiplexing to 
capture your system's 
operation correctly. 

Some microprocessors prefetch 
information from memory that 
may never get executed. 
Analysis probes can also 
distinguish prefetched 
information from executed. 
Furthermore, an analysis probe 
typically comes together with a 
disassembler to decode the 
hexadecimal information into 
microprocessor mnemonics, as 
discussed earlier.

Figure 4.1  An analysis probe
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Summary
We hope this application note 
has helped you gain a better 
understanding of what a logic 
analyzer is and does. Since 
most analyzers are made up of 
two major parts, timing and 
state, we have covered them 
separately. But together, they 
make up a powerful tool for the 
digital designer.

The timing analyzer is closely 
akin to the oscilloscope, but is 
better suited to bus-type 
structures or applications 
where you are dealing with 
many lines. It also has the 
ability to trigger on patterns 
among the lines, or even 
glitches.

A state analyzer is most often 
viewed as a software tool. In 
reality, it also has many uses in 
the hardware domain. Because 
it gets its clock from the system 
under test, it can be used to 
catch data when the system 
sees it – on the system's clock.

Armed with this fundamental 
knowledge, you can now use a 
logic analyzer with confidence.
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